Machine Learning with Python and Excel: A Beginner's Guide for 2025

Machine Learning in Python has become an essential tool for analysts in finance, business, and data analytics. When combined with Excel’s data manipulation and visualization capabilities, you can build an efficient workflow that bridges Python’s computational power with Excel’s accessibility. This tutorial introduces the basics of Machine Learning using Python, emphasizing how Excel can enhance your workflow.

Step 1: Install Necessary Libraries

Install the required Python libraries using the command below:
pip install scikit-learn pandas numpy matplotlib openpyxl
Excel Integration: The openpyxl library allows seamless reading from and writing to Excel files.

Step 2: Load and Preprocess Data

  1. Load Data: Import your dataset using Pandas. You can load Excel files with pd.read_excel():
    import pandas as pd
    data = pd.read_excel('dataset.xlsx')
  2. Explore the Data: Use Pandas functions like .head() and .info() to inspect the data.
  3. Handle Missing Values: Replace or drop missing values using Python or Excel:
    • In Python: data.fillna(value, inplace=True)
    • In Excel: Use functions like IF or FILTER.
  4. Separate Features and Target Variable: Define X (features) and y (target):
    X = data[['Feature1', 'Feature2']]
    y = data['Target']
    Data Preprocessing Guide

Step 3: Split Data into Training and Test Sets

Split the dataset into training and testing sets using Scikit-learn:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
Export Training and Testing Data: Save the training and testing sets back to Excel for manual review:
X_train.to_excel('X_train.xlsx', index=False)
y_train.to_excel('y_train.xlsx', index=False)
Train-Test Split Documentation

Step 4: Select and Train a Model

  1. Choose a Model: Select an appropriate model based on your problem (e.g., Linear Regression for regression tasks).
  2. Train the Model:
    from sklearn.linear_model import LinearRegression
    model = LinearRegression()
    model.fit(X_train, y_train)
  3. Document Results in Excel: Save model coefficients or parameters to Excel:
    import numpy as np
    coefficients = pd.DataFrame({'Feature': X.columns, 'Coefficient': model.coef_})
    coefficients.to_excel('model_coefficients.xlsx', index=False)
    Scikit-learn Model Selection Guide

Step 5: Evaluate the Model

  1. Evaluate Performance: Test the model on the test set:
    from sklearn.metrics import mean_absolute_error
    predictions = model.predict(X_test)
    mae = mean_absolute_error(y_test, predictions)
    print(f'Mean Absolute Error: {mae}')
  2. Visualize Results in Excel: Export predictions and actual values for comparison:
    results = pd.DataFrame({'Actual': y_test, 'Predicted': predictions})
    results.to_excel('model_results.xlsx', index=False)
    Model Evaluation Techniques

Step 6: Hyperparameter Tuning (Optional)

Optimize the model by experimenting with hyperparameters:

  1. Use tools like GridSearchCV:
    from sklearn.model_selection import GridSearchCV
    param_grid = {'fit_intercept': [True, False]}
    grid_search = GridSearchCV(model, param_grid, scoring='neg_mean_absolute_error')
    grid_search.fit(X_train, y_train)
  2. Save the best parameters to Excel:
    best_params = pd.DataFrame(grid_search.best_params_, index=[0])
    best_params.to_excel('best_params.xlsx', index=False)
    Hyperparameter Tuning Guide

Step 7: Make Predictions

Use the trained model to make predictions on new data:
new_data = pd.read_excel('new_data.xlsx')
new_predictions = model.predict(new_data)
Export predictions to Excel for client-friendly reporting:
pd.DataFrame({'Prediction': new_predictions}).to_excel('predictions.xlsx', index=False)

Step 8: Visualization (Optional)

Visualize results using Matplotlib:
import matplotlib.pyplot as plt
plt.scatter(y_test, predictions)
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.title('Actual vs Predicted')
plt.show()
Combine with Excel: Export raw data for additional charting using Excel’s built-in tools.
Matplotlib Documentation

Conclusion

By combining Python’s Machine Learning capabilities with Excel’s versatility, you can create a comprehensive data workflow that covers everything from preprocessing to reporting. This guide has introduced the key steps, including data preparation, model training, evaluation, and visualization. Explore more advanced models and techniques to deepen your expertise and expand your analytics capabilities.
Next Steps: Learn how to integrate Python models directly into Excel workflows with tools like VBA or PyXLL.

Feel free to leave a comment or question below. Happy learning!

Previous
Previous

Excel Tips for Actuarial Work

Next
Next

Survival Analysis with R and Excel: A Comprehensive Guide for Actuaries